correctionlib.convert.ndpolyfit
- correctionlib.convert.ndpolyfit(points: List[ndarray[Any, Any]], values: ndarray[Any, Any], weights: ndarray[Any, Any], varnames: List[str], degree: Tuple[int]) Tuple[Correction, Any]
Fit an n-dimensional polynomial to data points with weight
Example:
corr, fitresult = convert.ndpolyfit( points=[np.array([0.0, 1.0, 0.0, 1.0]), np.array([10., 20., 10., 20.])], values=np.array([0.9, 0.95, 0.94, 0.98]), weights=np.array([0.1, 0.1, 0.1, 0.1]), varnames=["abseta", "pt"], degree=(1, 1), )
Returns a Correction object along with the least squares fit result